Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Chinese Journal of Contemporary Pediatrics ; (12): 425-430, 2023.
Article in Chinese | WPRIM | ID: wpr-981974

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the most common monogenic inherited myocardial disease in children, and mutations in sarcomere genes (such as MYH7 and MYBPC3) are the most common genetic etiology of HCM, among which mutations in the MYH7 gene are the most common and account for 30%-50%. MYH7 gene mutations have the characteristics of being affected by environmental factors, coexisting with multiple genetic variations, and age-dependent penetrance, which leads to different or overlapping clinical phenotypes in children, including various cardiomyopathies and skeletal myopathies. At present, the pathogenesis, course, and prognosis of HCM caused by MYH7 gene mutations in children remain unclear. This article summarizes the possible pathogenesis, clinical phenotype, and treatment of HCM caused by MYH7 gene mutations, in order to facilitate the accurate prognostic evaluation and individualized management and treatment of the children with this disorder.


Subject(s)
Child , Humans , Cardiomyopathy, Hypertrophic/therapy , Phenotype , Troponin T/genetics , Mutation , Carrier Proteins/genetics , Myosin Heavy Chains/genetics , Cardiac Myosins/genetics
2.
Journal of Experimental Hematology ; (6): 367-372, 2022.
Article in Chinese | WPRIM | ID: wpr-928722

ABSTRACT

OBJECTIVE@#To summarize the clinical and laboratory characteristics of patients with acute myeloid leukemia (AML) with inv(16)/t(16;16) (p13.1;q22), and to analyze the risk factors affecting the prognosis of the patients.@*METHODS@#AML patients with inv(16)/t(16;16) (p13.1;q22) and/or CBFβ-MYH11+ admitted to the Department of Hematology, The First Affiliated Hospital of Soochow University from January 1, 2008 to October 30, 2019 were retrospective analyzed, the clinical and laboratory indicators, as well as treatment plans and efficacy evaluations of the patients were all recorded. Furthermore, related factors affecting the overall survival (OS) and event-free survival (EFS) of the patients were analyzed.@*RESULTS@#Among 151 AML patients with inv(16)/t(16;16) (p13.1;q22) and/or CBFβ-MYH11+, the percentage of additional chromosomal abnormalities was about 27.8%, and the most common additional chromosomal abnormality was +22 (33/151, 21.8%), followed by +8 (11/151, 7.3%). There were 112 patients with perfect NGS examination, and the result showed the most common accompanying gene mutations were KIT mutation (34/112, 30.4%) and FLT3 mutation (23/112, 20.5%). Univariate analysis showed that factors affecting EFS included: NE≤0.5×109/L (P=0.006) and combined K-RAS mutation (P=0.002); Factors affecting OS included: Age≥50 years old (P<0.001) and NE≤0.5×109/L (P=0.016). Multivariate analysis showed that NE≤0.5×109/L (P=0.019) was the risk factors affecting OS. The proportion of bone marrow eosinophilia (BME)≥10.00% (P=0.029) was the risk factors affecting EFS.@*CONCLUSION@#The prognosis for those newly diagnosed AML patients who were of advanced age, the high proportion of bone marrow eosinophils, K-RAS mutations, and agranulocytosis is poor. The treatment plans can be adjusted in the early stage to improve the prognosis of such patients.


Subject(s)
Humans , Middle Aged , Chromosome Inversion , Leukemia, Myeloid, Acute/genetics , Myosin Heavy Chains/genetics , Oncogene Proteins, Fusion , Prognosis , Retrospective Studies
3.
Int. j. morphol ; 39(5): 1406-1411, oct. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385479

ABSTRACT

SUMMARY: Both the masseter and medial pterygoid muscles elevate the mandible, raising the lower jaw by acting simultaneously on the lateral and medial surfaces of the mandibular ramus. Nevertheless, electromyographic studies indicate that these muscles, as well as the superficial and deep heads of the masseter, act in a different way during mastication. We have analyzed by real time quantitative polymerase chain reaction (RT-qPCR) the expression of myosin heavy chain (MHC) isoforms in the masseter and medial pterygoid muscles in humans in order to identify possible differences in the expression patterns that may be related to functional differences identified with electromyography. Our findings indicate that the expression pattern of MHC isoforms in the two muscles is characteristic of fast and powerful phasic muscles. We have also observed a high percentage of expression of the MHC-IIx isoform and the expression of the MHC-M isoform at the mRNA level in both muscles, an isoform that does not translate into protein in the masticatory muscles of humans. The high percentage of expression of the MHC-IIx isoform in humans can be related to a high contractile speed of the masseter and medial pterygoid in humans. On the other hand, the low percentage of expression of the MHC-M isoform at the mRNA level in both muscles can be related to the complex evolutionary process that has reduced the size and force of the masticatory muscles in humans.


RESUMEN: Los músculos masetero y pterigoideo medial elevan la mandíbula actuando de forma simultánea sobre las caras lateral y medial de su rama. Sin embargo, los estudios electromiográficos indican que estos dos músculos actúan de forma diferente durante la masticación, de la misma forma que lo hacen las porciones superficial y profunda del músculo masetero. En el presente estudio hemos analizado mediante PCR en tiempo real la expresión de las isoformas de la cadena pesada de la miosina o myosin heavy chain (MHC) en los músculos masetero y pterigoideo medial en humanos, con la finalidad de identificar diferencias en los patrones de expresión que se puedan relacionar con las diferencias funcionales identificadas con la electromiografía. Nuestros resultados indican que el patrón de expresión de las isoformas de la MHC en los dos músculos es la característica de los músculos rápidos y potentes. También hemos observado un elevado porcentaje de expresión de la isoforma MHC-IIx y la expresión a nivel de ARNm de la isoforma MHC-M en los dos músculos, una isoforma que no se detecta a nivel de proteína en los músculos masticadores humanos. El elevado porcentaje de expresión de la isoforma MHC-IIx que hemos observado se puede relacionar con una elevada velocidad de contracción de los músculos masetero y pterigoideo medial en los humanos. Por otro lado, el bajo porcentaje de expresión de la isoforma MHC-M a nivel de ARNm en ambos músculos se puede relacionar con los procesos evolutivos complejos que han reducido el tamaño y la fuerza de los músculos masticadores en los humanos.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Pterygoid Muscles/metabolism , Myosin Heavy Chains/metabolism , Masseter Muscle/metabolism , Cadaver , Myosin Heavy Chains/genetics , RNA Isoforms/metabolism , Real-Time Polymerase Chain Reaction
4.
Arch. cardiol. Méx ; 90(1): 59-68, Jan.-Mar. 2020. tab, graf
Article in English | LILACS | ID: biblio-1131007

ABSTRACT

Abstract Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy without apparent cardiac justification. Sudden cardiac death may be the first manifestation of the disease. It occurs mainly in adulthood and can be seen in childhood and adolescence where genetic origin predominates. Primary HCM (“familial”) is inherited in an autosomal dominant pattern in the 25 subtypes informed in Online Mendelian Inheritance in Man. The proteins encoded by the mutated genes are part of the sarcomere in the cardiac cells, being the thick filament the most frequently affected, with the worst prognosis. In the present article, we describe the Mendelian inheritance of the disease and the two most associated genes with sudden death: MYBPC3 and MYH7.


Resumen La miocardiopatía hipertrófica (MCH) es el aumento de grosor de la pared ventricular izquierda no relacionada con otras alteraciones cardíacas. Es una enfermedad que puede presentar como primera manifestación clínica la muerte súbita y de ahí su relevancia clínica. Aunque se presenta sobre todo en la edad adulta, puede aparecer durante la infancia y adolescencia, en las que predominan los casos de origen hereditario. La MCH primaria, de causa genética, muestra en particular un patrón de herencia autosómico dominante en los 25 subtipos reconocidos en OMIM (Online Mendelian Inheritance in Man). Las proteínas codificadas por los genes mutantes forman parte del sarcómero en células musculares cardíacas, y las variantes patogénicas de filamentos gruesos son las de mayor frecuencia y peor pronóstico. En este artículo se describen la herencia mendeliana de la enfermedad y la relación con muerte súbita de los genes más frecuentemente encontrados en ella: MYBPC3 y MYH7.


Subject(s)
Humans , Child, Preschool , Adolescent , Adult , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Myosin Heavy Chains/genetics , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/physiopathology
5.
Chinese Journal of Cardiology ; (12): 287-293, 2020.
Article in Chinese | WPRIM | ID: wpr-941107

ABSTRACT

Objective: To evaluate the cardiac functional changes in hypertrophic cardiomyopathy(HCM) patients with β-myosin heavy chain gene (MYH7) mutations by three-dimensional (3D) speckle tracking imaging(3D-STI) and conventional echocardiography modalities, and then to explore the potential predictors of adverse cardiovascular events in these patients. Methods: A consecutive series of 192 HCM patients admitted in our center from October 2014 to October 2016 were genetically screened to identify MYH7 mutations in this retrospective study. A total of 43 HCM patients with MYH7 mutations were enrolled. The patients were divided into events group(n=13) and no event group(n=30) according to the presence or absence of adverse cardiovascular events(primary and secondary endpoints). All patients were followed up to January 2019 after comprehensive evaluation of 3D-STI, two-dimensional and Doppler echocardiography. The adverse cardiovascular events were recorded. Results: The median follow up time was 1 012 (812, 1 330) days. During follow-up, 13 patients (30.2%) reached endpoints: 6 cases of the primary endpoints(2 cases of sudden cardiac death(SCD), 3 cases of survival after defibrillation, and 1 case of appropriate implantable cardioverter-defibrillator(ICD) discharge); 7 cases of the second endpoints(5 cases of heart failure hospitalization, 1 case of syncope and cardioversion due to supraventricular tachycardia, and 1 case of end-stage HCM). Patients with adverse cardiovascular events had higher prevalence of syncope and risk of SCD, enlarged left atrial volume index(LAVI) and reduced 3D left ventricular global longitudinal train (3D-GLS), as compared to those without adverse events(all P<0.05). The multivariate Cox regression analysis showed that reduced 3D-GLS(HR=0.814, 95%CI 0.663-0.999, P=0.049) was an independent predictor for adverse cardiovascular events. The cutoff value of 3D-GLS≤13.67% was linked with significantly increased risk of adverse cardiovascular events in this patient cohort(AUC=0.753, 95%CI 0.558-0.948, sensitivity 86%, specificity 69%, P<0.05). The Kaplan-Meier analysis indicated that the patients with the 3D-GLS≤ 13.67% faced higher risk of death than those with 3D-GLS>13.67%. Conclusion: 3D-GLS is useful on predicting adverse cardiovascular events in HCM patients with MYH7 mutations.


Subject(s)
Humans , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/genetics , Echocardiography , Mutation , Myosin Heavy Chains/genetics , Predictive Value of Tests , Retrospective Studies , Risk Factors
6.
Arq. bras. cardiol ; 107(3): 257-265, Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-796035

ABSTRACT

Abstract Background: Mutations in sarcomeric genes are found in 60-70% of individuals with familial forms of hypertrophic cardiomyopathy (HCM). However, this estimate refers to northern hemisphere populations. The molecular-genetic profile of HCM has been subject of few investigations in Brazil, particularly in the south of the country. Objective: To investigate mutations in the sarcomeric genes MYH7, MYBPC3 and TNNT2 in a cohort of HCM patients living in the extreme south of Brazil, and to evaluate genotype-phenotype associations. Methods: Direct DNA sequencing of all encoding regions of three sarcomeric genes was conducted in 43 consecutive individuals of ten unrelated families. Results: Mutations for CMH have been found in 25 (58%) patients of seven (70%) of the ten study families. Fourteen (56%) individuals were phenotype-positive. All mutations were missense, four (66%) in MYH7 and two (33%) in MYBPC3. We have not found mutations in the TNNT2 gene. Mutations in MYH7 were identified in 20 (47%) patients of six (60%) families. Two of them had not been previously described. Mutations in MYBPC3 were found in seven (16%) members of two (20%) families. Two (5%) patients showed double heterozygosis for both genes. The mutations affected different domains of encoded proteins and led to variable phenotypic expression. A family history of HCM was identified in all genotype-positive individuals. Conclusions: In this first genetic-molecular analysis carried out in the south of Brazil, we found mutations in the sarcomeric genes MYH7 and MYBPC3 in 58% of individuals. MYH7-related disease was identified in the majority of cases with mutation.


Resumo Fundamento: Mutações em genes do sarcômero são encontradas em 60-70% dos indivíduos com formas familiares de cardiomiopatia hipertrófica. (CMH). Entretanto, essa estimativa refere-se a populações de países do hemisfério norte. O perfil genético-molecular da CMH foi tema de poucos estudos no Brasil, particularmente na região sul do país. Objetivo: Realizar a pesquisa de mutações dos genes sarcoméricos MYH7, MYBPC3 e TNNT2 numa coorte de CMH estabelecida no extremo sul do Brasil, assim como avaliar as associações genótipo-fenótipo. Métodos: Sequenciamento direto do DNA de todas as regiões codificantes dos três genes sarcoméricos foi realizada em 43 indivíduos consecutivos de dez famílias não-relacionadas. Resultados: Mutações para CMH foram encontradas em 25 (58%) indivíduos de sete (70%) das dez famílias estudadas, sendo 14 (56%) deles fenótipo-positivos. Todas as mutações eram missense, quatro (66%) no gene MYH7 e duas (33%) no gene MYBPC3. Não foram encontradas mutações no gene TNNT2. Mutações em MYH7 foram identificadas em 20 (47%) indivíduos de seis (60%) famílias. Duas delas não haviam sido previamente relatadas. Mutações de MYBPC3 foram detectadas em sete (16%) membros de duas (20%) famílias. Dois (5%) indivíduos apresentaram dupla heterozigose com mutações em ambos os genes. As mutações acometeram distintos domínios das proteínas codificadas e produziram expressão fenotípica variável. História familiar de CMH foi identificada em todos os indivíduos genótipo-positivos. Conclusões: Nessa primeira análise genético-molecular da CMH realizada no sul do Brasil, foram encontradas mutações nos genes sarcoméricos MYH7 e MYBPC3 em 58% dos indivíduos. Doença relacionada ao gene MYH7 foi identificada na maioria dos casos com mutação.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Young Adult , Carrier Proteins/genetics , Myosin Heavy Chains/genetics , Cardiomyopathy, Hypertrophic, Familial/genetics , Cardiac Myosins/genetics , Genetic Association Studies , Mutation , Phenotype , Sarcomeres/genetics , Severity of Illness Index , Brazil , DNA Mutational Analysis/methods , Cross-Sectional Studies , Death, Sudden, Cardiac , Hypertrophy, Left Ventricular/genetics , Statistics, Nonparametric , Troponin T/genetics
7.
Invest. clín ; 55(1): 23-31, mar. 2014. ilus, tab
Article in English | LILACS | ID: lil-746282

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a cardiac disease, characterized by marked hypertrophy and genetic variability. HCM has been associated with sarcomere protein mutations, being cardiac b-myosin (coded by the MYH7 gene) and myosin binding protein C (coded by the MYBPC3 gene) the most frequently affected proteins. As in Venezuela only the clinical analysis are performed in HCM patients, we decided to search for genetic variations in the MYH7 gene. Coding regions, including the junction exon-intron of the MYH7 gene, were studied in 58 HCM patients, whose samples were collected at the ASCARDIO Hospital (Barquisimeto, Lara state, Venezuela) and 106 control subjects from the ASCARDIO Hospital and the IVIC (Barquisimeto Lara state and Miranda, Venezuela, respectively). The blood samples were analyzed by genomic DNA isolation, followed by polymerase chain reaction and sequence analysis. The screening of the MYH7 gene revealed eight already reported polymorphic variants, as well as two intronic variations in these HCM patients. Neither any missense mutations nor other pathological mutations in the MYH7 gene were found in the HCM patients.


La miocardiopatía hipertrófica (MH) es una enfermedad cardiaca primaria, caracterizada por una marcada hipertrofia y variabilidad genética. MH ha sido asociada con mutaciones en las proteínas del sarcómero, siendo la beta miosina cardiaca, codificada por el gen MYH7 y la proteína de unión a miosina C, codificada por el gen MYBPC3, las principalmente afectadas. En Venezuela únicamente se realiza el diagnóstico clínico de MH, por lo cual el objetivo principal de este trabajo fue realizar el análisis genético en los pacientes, iniciando con el gen MYH7. Para ello, se estudió la región codificante, incluyendo la región de unión exón-intron del gen MYH7 en 58 pacientes provenientes de ASCARDIO (Barquisimeto, estado Lara) y 106 controles provenientes de ASCARDIO e IVIC (estados Lara y Miranda, Venezuela). Se colectaron las muestras de sangre para el aislamiento del ADN genómico, se realizó la técnica de PCR, seguido del análisis de secuencias para la detección de mutaciones en pacientes y controles. Se encontraron 8 polimorfismos previamente reportados, y 2 variaciones intrónicas. No se encontraron mutaciones que involucraran un cambio de aminoácido en ninguno de los exones del gen MYH7 de la beta miosina cardiaca.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic/genetics , Genetic Variation , Myosin Heavy Chains/genetics , Cardiomyopathy, Hypertrophic/epidemiology , DNA , DNA Mutational Analysis , Exons/genetics , Gene Frequency , Genetic Testing , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/genetics , Introns/genetics , Polymorphism, Single Nucleotide , Venezuela/epidemiology
8.
Yonsei Medical Journal ; : 662-666, 2012.
Article in English | WPRIM | ID: wpr-22412

ABSTRACT

In this report, we describe a Korean patient with May-Hegglin anomaly from a mutation of the MYH9 gene. The proband was a 21-year-old man with thrombocytopenia. He did not have a bleeding tendency. His neutrophil count was normal at 7490/mm3; however, the neutrophils contained abnormal basophilic inclusions in their cytoplasm. The platelet count was decreased at 15000/mm3 with giant platelets. Coagulation test results were not remarkable. Direct sequencing of MYH9 revealed that he was heterozygous for a mutation in exon 1, which was a 97T>A substitution mutation affecting codon 33, substituting tryptophan with arginine (Trp33Arg). Family study showed that both of his parents had normal phenotype and genotypes, indicating a de novo occurrence of the mutation in the proband.


Subject(s)
Adult , Humans , Male , Young Adult , Asian People , Exons/genetics , Molecular Motor Proteins/genetics , Mutation , Myosin Heavy Chains/genetics , Thrombocytopenia/genetics
9.
Indian J Hum Genet ; 2010 May; 16(2): 67-71
Article in English | IMSEAR | ID: sea-138901

ABSTRACT

CONTEXT: Hypertrophic cardiomyopathy (HCM) is known to be manifested by mutations in 12 sarcomeric genes and dilated cardiomyopathy (DCM) is known to manifest due to cytoskeletal mutations. Studies have revealed that sarcomeric mutations can also lead to DCM. Therefore, in the present study, we have made an attempt to compare and analyze the genetic variations of beta-myosin heavy chain gene (β-MYH7), which are interestingly found to be common in both HCM and DCM. The underlying pathophysiological mechanism leading to two different phenotypes has been discussed in this study. Till date, about 186 and 73 different mutations have been reported in HCM and DCM, respectively, with respect to this gene. AIM: The screening of β-MYH7 gene in both HCM and DCM has revealed some common genetic variations. The aim of the present study is to understand the pathophysiological mechanism underlying the manifestation of two different phenotypes. MATERIALS AND METHODS: 100 controls, 95 HCM and 97 DCM samples were collected. Genomic DNA was extracted following rapid nonenzymatic method as described by Lahiri and Nurnberger (1991), and the extracted DNA was later subjected to polymerase chain reaction (PCR) based single stranded conformation polymorphism (SSCP) analysis to identify single nucleotide polymorphism (SNP)s/mutations associated with the diseased phenotypes. RESULTS AND CONCLUSION: Similar variations were observed in β-MYH7 exons 7, 12, 19 and 20 in both HCM and DCM. This could be attributed to impaired energy compromise, or to dose effect of the mutant protein, or to even environmental factors/modifier gene effects wherein an HCM could progress to a DCM phenotype affecting both right and left ventricles, leading to heart failure.


Subject(s)
Blood Pressure , Cardiac Myosins/genetics , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Genetic Variation/genetics , Heart Rate , Humans , Mutation , Myosin Heavy Chains/genetics , Polymorphism, Single Nucleotide/genetics , Sarcomeres/genetics
10.
Braz. j. med. biol. res ; 39(5): 621-627, May 2006. tab, graf
Article in English | LILACS | ID: lil-425792

ABSTRACT

The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35°C. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35 percent in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.


Subject(s)
Animals , Male , Rats , Matrix Metalloproteinases/metabolism , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Swimming/physiology , Ventricular Remodeling/physiology , Blotting, Western , Body Weight , Gene Expression Regulation , Lactic Acid/blood , Matrix Metalloproteinases/genetics , Myocardium/enzymology , Myosin Heavy Chains/genetics , Organ Size , Physical Conditioning, Animal , Polymerase Chain Reaction , Rats, Wistar , RNA, Messenger/analysis , Time Factors
11.
Arq. bras. cardiol ; 84(6): 467-472, jun. 2005. ilus, tab
Article in Portuguese | LILACS | ID: lil-420008

ABSTRACT

OBJETIVO: Estudar os marcadores moleculares para os genes da cadeia pesada da beta-miosina cardíaca e da proteína-C de ligacão à miosina em familiares de portadores de cardiomiopatia hipertrófica. MÉTODOS: Foram estudadas 12 famílias que realizaram anamnese, exame físico, eletrocardiograma, ecocardiograma e coleta de sangue para o estudo genético através da reacão em cadeia da polimerasse. RESULTADOS: Dos 227 familiares 25 por cento eram acometidos, sendo 51 por cento do sexo masculino com idade média de 35n19 (2 a 95) anos. A análise genética mostrou ligacão com o gene da b-miosina cardíaca em uma família e, em outra, ligacão com o gene da proteína C de ligacão à miosina. Em cinco famílias foram excluídas ligacões com os dois genes; em duas, a ligacão com o gene da proteína C de ligacão à miosina, porém para o gene da b-miosina os resultados foram inconclusivos; em duas famílias os resultados foram inconclusivos para os dois genes e em uma foi excluída ligacão para o gene da b-miosina mas ficou inconclusivo para o gene da proteína C de ligacão à miosina. CONCLUSAO: Em nosso meio, talvez predominem outros genes que não aqueles descritos na literatura, ou que existam outras diferencas genéticas relacionadas com a origem de nossa populacão e/ou fatores ambientais.


Subject(s)
Child, Preschool , Child , Adolescent , Adult , Middle Aged , Aged, 80 and over , Humans , Male , Female , Cardiomyopathy, Hypertrophic, Familial/genetics , Carrier Proteins/genetics , Myosin Heavy Chains/genetics , Ventricular Myosins/genetics , Genetic Markers , Mutation , Pedigree , Phenotype
12.
P. R. health sci. j ; 17(4): 323-6, Dec. 1998. ilus, graf
Article in English | LILACS | ID: lil-234845

ABSTRACT

OBJECTIVE: To determine whether cell cycle changes can be detected in myosin II-deficient cells using flow cytometry techniques. BACKGROUND: Although the primary role of myosin II (Myo1p) in the yeast Saccharomyces cerevisiae is in cytokinesis we have reported that this conventional myosin also appears to inuence the regulation of cell wall metabolism as indicated by increases in the expression of chitin metabolizing enzymes in a null mutant of the MYO1 gene. The expression of these enzymes is known to be regulated in the cell cycle suggesting that cell cycle changes may alter their expression. METHODS: Flow cytometry was employed to assess the nuclear DNA content of logarithmic yeast cell cultures as a means of determining changes in the cell cycle of Myo1p-deficient cells. RESULTS: Significant changes were observed in the Myo1p-deficient strain suggesting that these cells are arrested in G2/M-phase of the cell cycle. CONCLUSIONS: Based on the results of this preliminary study, we propose a model in which the increased activity of chitin metabolizing enzymes may be explained by a mitotic arrest in these cells.


Subject(s)
Myosin Heavy Chains/metabolism , Yeasts/cytology , Yeasts/metabolism , Cell Culture Techniques , Cell Cycle , Cell Division , Cell Wall/metabolism , Chitin Synthase/genetics , Chitin Synthase/metabolism , Chitin/metabolism , Flow Cytometry , Gene Expression , Haploidy , Mitosis , Myosin Heavy Chains/deficiency , Myosin Heavy Chains/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL